Durée: 144 minutes

Algèbre linéaire Examen Partie commune Automne 2018

Réponses

Pour les questions à choix multiple, on comptera :

- +3 points si la réponse est correcte,
 - 0 point si la question n'est pas répondue ou s'il y a plusieurs croix,
- -1 point si la réponse est incorrecte.

Les notations et la terminologie de cet énoncé sont celles utilisées dans les séries d'exercices et le cours d'Algèbre linéaire du semestre d'Automne 2018.

Notation

- Pour une matrice $A,\,a_{ij}$ désigne l'élément situé sur la ligne i et la colonne j de la matrice.
- Pour un vecteur $\vec{x}, \, x_i$ désigne la i-ème coordonnée de $\vec{x}.$
- I_m désigne la matrice identité de taille $m{\times}m.$
- $-\mathbb{P}_n$ désigne l'espace vectoriel des polynômes réels de degré inférieur ou égal à n.

Première partie, questions à choix multiple

Pour chaque question marquer la case correspondante à la réponse correcte sans faire de ratures. Il n'y a qu'une seule réponse correcte par question.

Question 1: Soient

$$\mathcal{B} = \left\{ \begin{pmatrix} 1 \\ -2 \end{pmatrix}, \begin{pmatrix} -3 \\ 5 \end{pmatrix} \right\} \quad \text{et} \quad \mathcal{C} = \left\{ \begin{pmatrix} -3 \\ 8 \end{pmatrix}, \begin{pmatrix} 2 \\ -5 \end{pmatrix} \right\}$$

deux bases de \mathbb{R}^2 . Alors la matrice de passage P de la base \mathcal{B} vers la base \mathcal{C} , telle que $[\vec{x}]_{\mathcal{C}} = P[\vec{x}]_{\mathcal{B}}$ pour tout $\vec{x} \in \mathbb{R}^2$, est

$$\square P = \begin{pmatrix} 11 & 7 \\ -30 & -19 \end{pmatrix}. \qquad \square P = \begin{pmatrix} -19 & -7 \\ 30 & 11 \end{pmatrix}.$$

$$\square P = \begin{pmatrix} -9 & 5 \\ -2 & 1 \end{pmatrix}. \qquad \blacksquare P = \begin{pmatrix} 1 & -5 \\ 2 & -9 \end{pmatrix}.$$

Question 2: Soient

$$\vec{v} = \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}$$
 et $W = \operatorname{span} \left\{ \begin{pmatrix} -1 \\ 1 \\ -1 \end{pmatrix}, \begin{pmatrix} 1 \\ 1 \\ -1 \end{pmatrix} \right\}.$

Si \mathbb{R}^3 est muni du produit scalaire canonique, alors la projection orthogonale de \vec{v} sur W est

$$\blacksquare \begin{pmatrix} 1 \\ -1/2 \\ 1/2 \end{pmatrix}. \qquad \Box \begin{pmatrix} 2/3 \\ -2/3 \\ 2/3 \end{pmatrix}.$$

$$\square \begin{pmatrix} 1 \\ 1/2 \\ -1/2 \end{pmatrix}. \qquad \square \begin{pmatrix} -2/3 \\ 2/3 \\ -2/3 \end{pmatrix}.$$

Question 3: Soit

$$A = \left(\begin{array}{cccc} 1/2 & 0 & 0 & 0\\ 0 & -1 & 0 & 0\\ -1 & 0 & 1 & 0\\ -1/6 & 0 & 1/3 & 1/3 \end{array}\right)$$

et B une matrice de taille 4×4 telle que $AB=I_4.$

Soit $\mathrm{Tr}(B)=b_{11}+b_{22}+b_{33}+b_{44}$ la trace de B. Alors

$$\operatorname{Tr}(B) = 5.$$

Question 4: Soient

$$\vec{x}_1 = \begin{pmatrix} -2 \\ 2 \\ 1 \\ 0 \end{pmatrix}, \quad \vec{x}_2 = \begin{pmatrix} 2 \\ 2 \\ 0 \\ 1 \end{pmatrix}, \quad \vec{x}_3 = \begin{pmatrix} 3 \\ -2 \\ 1 \\ 7 \end{pmatrix}$$

et soit $W=\mathrm{span}\,\{\vec{x}_1,\vec{x}_2,\vec{x}_3\}$. Le procédé d'orthogonalisation de Gram-Schmidt, sans normalisation et sans changer l'ordre, appliqué à la base $\{\vec{x}_1,\vec{x}_2,\vec{x}_3\}$ de W nous fournit une base orthogonale $\{\vec{v}_1,\vec{v}_2,\vec{v}_3\}$ de W, où

$$\vec{v}_3 = \vec{x}_3 - \vec{v}_1 + \vec{v}_2.$$

$$\vec{v}_3 = \vec{x}_3 + \vec{v}_1 - \vec{v}_2.$$

Question 5 : Soit α un nombre réel et

$$A = \left(\begin{array}{rrrr} -3 & -3 & -3 & -2 \\ -2 & -1 & -1 & 0 \\ 0 & 1 & 1 & 2 \\ \alpha & 2 & 3 & 3 \end{array}\right).$$

Le déterminant de la matrice A est égal à

$$\det(A) = 2.$$

Question 6: Soit A une matrice de taille $m \times n$ telle que $A\vec{x} = \vec{b}$ possède au moins une solution pour tout choix de $\vec{b} \in \mathbb{R}^m$. Alors il est toujours vrai que

$$A^T \vec{y} = \vec{0}$$
 possède une solution unique.

Question 7: Soient

$$A = \left(\begin{array}{rrrr} 2 & 1 & -1 & 1 \\ 0 & 3 & 2 & -1 \\ 1 & -1 & 4 & -1 \\ -1 & 1 & 1 & 3 \end{array}\right)$$

et $V = \left\{ \vec{x} \in \mathbb{R}^4 \mid A\vec{x} = 3\vec{x} \right\}$. Alors:

Question 8 : Soit A une matrice de taille $m \times n$. Si m < n, alors la plus petite valeur possible pour $\dim(\operatorname{Ker} A)$ est

m-n.

 \bigcirc 0.

n-m.

 \square m.

Question 9 : Soit $T: \mathbb{R}^4 \to \mathbb{R}^4$ l'application linéaire définie par

$$T\left(\begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{pmatrix}\right) = \begin{pmatrix} 6x_1 \\ -12x_1 + 6x_2 - 3x_3 + 6x_4 \\ -24x_1 + 18x_3 \\ -12x_1 + 6x_2 + 6x_3 + 6x_4 \end{pmatrix}.$$

Alors

Question 10: Soit

$$A = \left(\begin{array}{ccc} 5 & -7 & 7 \\ 4 & -3 & 4 \\ 4 & -1 & 2 \end{array}\right).$$

Les valeurs propres de A sont

- -5, -1 et 2.
- -5, -2 et 3.
- -2, 1 et 5.
- -3, 2 et 5.

Question 11 : Soit $\{\vec{v}_1,...,\vec{v}_6\}$ une base orthonormée de \mathbb{R}^6 muni du produit scalaire canonique et

$$A = 3\vec{v}_1\vec{v}_1^T - 2\left(\vec{v}_2\vec{v}_2^T + \vec{v}_3\vec{v}_3^T\right) + \frac{1}{3}\left(\vec{v}_4\vec{v}_4^T + \vec{v}_5\vec{v}_5^T + \vec{v}_6\vec{v}_6^T\right)$$

Le polynôme caractéristique p_A de A est donné par

- $p_A(t) = (t-3) + 2(t+2) + 3(t-\frac{1}{3}).$
- $p_A(t) = (t-3)(t+2)^2(t-\frac{1}{3})^3.$
- $p_A(t) = (t-3) + (t+2)^2 + (t-\frac{1}{3})^3.$
- $p_A(t) = t^3(t-3)(t+2)(t-\frac{1}{3}).$

Question 12 : Soit $\mathcal{B} = \{1, 1+t, 1+t^2\}$ une base de \mathbb{P}_2 et $T: \mathbb{P}_2 \to \mathbb{P}_2$ l'application linéaire définie par

$$T(a+bt+ct^2) = (a+b+c) + (a-b)t + (b-c)t^2$$
 pour tout $a, b, c \in \mathbb{R}$.

La matrice M de T par rapport à la base \mathcal{B} , telle que $[T(p)]_{\mathcal{B}} = M[p]_{\mathcal{B}}$ pour tout $p \in \mathbb{P}_2$, est

$$\blacksquare M = \begin{pmatrix} 0 & 1 & 2 \\ 1 & 0 & 1 \\ 0 & 1 & -1 \end{pmatrix}.$$

Question 13 : Soit h un paramètre réel et soient

$$A_1=\left(\begin{array}{cc}1&-1\\-1&-h\end{array}\right)\,,\quad A_2=\left(\begin{array}{cc}0&1\\h&-1\end{array}\right)\,,\quad A_3=\left(\begin{array}{cc}h&0\\0&1\end{array}\right)\,,\quad A_4=\left(\begin{array}{cc}-1&h\\1&0\end{array}\right)\,.$$

Alors les matrices A_1 , A_2 , A_3 et A_4 sont linéairement dépendantes si et seulement si

- $h \in \{0, 1\}.$
- $h \in \{-1, 0\}.$

Question 14 : Soient h un paramètre réel

$$A = \begin{pmatrix} 3 & -1 & -1 \\ 1 & \frac{7}{3} & 1 \\ -3 & 1 - 2h & 1 - h \end{pmatrix} \quad \text{et} \quad \vec{b} = \begin{pmatrix} 2 \\ \frac{4}{3}h + \frac{2}{3} \\ -1 \end{pmatrix}.$$

Alors l'équation matricielle $A\vec{x} = \vec{b}$

- n'admet aucune solution pour tout choix de h.
- admet le vecteur $\vec{x} = \begin{pmatrix} \frac{1}{6}(4+h) \\ \frac{1}{2}h \\ 0 \end{pmatrix}$ pour solution si et seulement si $h \neq \pm 1$.
- admet le vecteur $\vec{x} = \begin{pmatrix} \frac{1}{6}(4+h) \\ \frac{1}{2}h \\ 0 \end{pmatrix}$ pour solution si et seulement si $h = \pm 1$.

Question 15: Soit $T: \mathbb{R}^2 \to \mathbb{R}^2$ une application linéaire,

$$\mathcal{B} = \left\{ \begin{pmatrix} 1 \\ -1 \end{pmatrix}, \begin{pmatrix} -1 \\ 2 \end{pmatrix} \right\} \quad \text{une base de } \mathbb{R}^2, \quad \text{et} \quad M = \begin{pmatrix} 2 & 3 \\ 1 & 6 \end{pmatrix}$$

la matrice M de T par rapport à la base $\mathcal{B},$ c'est-à-dire $\left[T(\vec{x})\right]_{\mathcal{B}}=M\left[\vec{x}\right]_{\mathcal{B}}$ pour tout $\vec{x}\in\mathbb{R}^2.$

Question 16 : Soit $\mathcal{M}_{2\times 3}(\mathbb{R})$ l'espace vectoriel des matrices de taille 2×3 . Parmi les trois sous-ensembles de $\mathcal{M}_{2\times 3}(\mathbb{R})$ suivants :

$$\begin{split} \mathcal{E}_1 &= \left\{ \left(\begin{array}{cc} u & 0 & v \\ 0 & w & 0 \end{array} \right) \;\middle|\; u, v, w \in \mathbb{R} \text{ et } uv = w^2 \right\}, \\ \mathcal{E}_2 &= \left\{ a \left(\begin{array}{cc} 1 & 3/2 & 7 \\ -5 & \sqrt{2} & 0 \end{array} \right) + b \left(\begin{array}{cc} 0 & 0 & 1 \\ 0 & 0 & 1 \end{array} \right) \;\middle|\; a, b \in \mathbb{R} \right\}, \\ \mathcal{E}_3 &= \left\{ \left(\begin{array}{cc} 0 & x & 1 \\ y & 0 & x - y \end{array} \right) \;\middle|\; x, y \in \mathbb{R} \right\}, \end{split}$$

lesquels sont des sous-espaces vectoriels de $\mathcal{M}_{2\times 3}(\mathbb{R})$?

- seulement \mathcal{E}_2 .
- \square seulement \mathcal{E}_3 .
- \square seulement \mathcal{E}_1 .
- \square seulement \mathcal{E}_2 et \mathcal{E}_3 .

Question 17 : Soit $T: \mathbb{P}_3 \to \mathbb{R}^4$ l'application linéaire définie par

$$T(a+bt+ct^{2}+dt^{3}) = \begin{pmatrix} a+b-c+3d \\ b+2d \\ 2a+3b-2c+8d \\ -3b-6d \end{pmatrix}.$$

Alors

- Ker $T = \text{span} \{1 + t^2, 1 + 2t t^3\}.$

Question 18: La matrice $A = \begin{pmatrix} 23 & -36 \\ -36 & 2 \end{pmatrix}$ est diagonalisable en base orthonormée et peut s'écrire sous la forme $A = QDQ^T$, avec Q une matrice orthogonale et D une matrice diagonale, où

Question 19 : Soient A une matrice non-nulle de taille $m \times n$ et $\vec{b} \in \mathbb{R}^m$. Alors, il est toujours vrai que le vecteur $\vec{b} - A\vec{x}$ appartient à $Ker(A^T)$ pour un unique choix de $\vec{x} \in \mathbb{R}^n$. la matrice $A^{T}A$ est inversible. l'équation $A\vec{x} = \vec{b}$ admet une unique solution au sens des moindres carrés. $A\hat{x} = A\hat{x}'$ si \hat{x} et \hat{x}' sont deux solutions au sens des moindres carrés de $A\vec{x} = \vec{b}$. Question 20: Soit $A = \begin{pmatrix} 1 & -2 & -3 & 4 \\ 5 & -4 & -17 & 16 \\ -2 & 16 & -3 & -11 \\ 3 & -15 & -2 & 6 \end{pmatrix}.$ Calculer la factorisation LU de la matrice A (en utilisant seulement des opérations élémentaires sur les lignes consistant à additionner un multiple d'une ligne à une autre ligne en dessous). Alors l'élément ℓ_{42} de la matrice L est donné par $\ell_{42} = -\frac{3}{2}$. Question 21: Soient A et B deux matrices inversibles de taille $n \times n$. Alors le nombre $\frac{\det(A^T) + \det(B^T)}{\det(A)\det(B)}$ est égal à $\det(A^T - A) + \det(B^T - B)$. est égal à $\det(A^{-1}) + \det(B^{-1})$. \square est égal à $\det(B^{-1} + A^{-1})$.

 \square est égal à $\frac{1}{\det(B)} - \frac{1}{\det(A)}$.

On suppose que $\{\vec{u}_1, \vec{u}_2, \vec{u}_3\}$ est une base de \mathbb{R}^3 telle que (a) les espaces propres de A sont $E_1 = \operatorname{span} \{\vec{u}_1, \vec{u}_2\}$ et $E_2 = \operatorname{span} \{\vec{u}_3\}$, (b) $B\vec{u}_2 = -\vec{u}_2$ et $Ker(B) = span \{\vec{u}_1, \vec{u}_3\}.$ Alors aucune des matrices AB et A+B n'est diagonalisable en général. la matrice A + B est toujours diagonalisable, mais AB n'est pas diagonalisable en général. la matrice AB est toujours diagonalisable, mais A + B n'est pas diagonalisable en général. les matrices AB et A + B sont toujours diagonalisables. Question 23: Soient $A = \begin{pmatrix} 1 & 2 & 0 \\ 2 & 0 & 1 \\ -1 & 2 & 0 \\ 2 & 0 & -1 \end{pmatrix} \quad \text{et} \quad \vec{b} = \begin{pmatrix} 2 \\ 4 \\ 2 \\ 4 \end{pmatrix}.$ Alors la solution au sens des moindres carrés $\widehat{x}=\left(\begin{array}{c}\widehat{x}_1\\\widehat{x}_2\\\widehat{x}_3\end{array}\right)$ de l'équation $A\vec{x}=\vec{b}$ satisfait $\hat{x}_1 = 4/5$ et $\hat{x}_2 = 1$. $\hat{x}_1 = 8/5$ et $\hat{x}_3 = 0$. Question 24 : Soit b un paramètre réel et soit $A = \left(\begin{array}{ccc} 1 & b - 1 & 0 \\ 0 & b & 0 \\ 0 & b + 1 & b \end{array}\right).$ Alors pour b = -1 la matrice A possède deux valeurs propres distinctes et est diagonalisable. pour tout $b \neq \pm 1$ la matrice A possède deux valeurs propres distinctes et est diagonalisable. pour b=1 la matrice A possède une seule valeur propre et est diagonalisable.

pour tout $b \neq \pm 1$ la matrice A possède une seule valeur propre et est diagonalisable.

Question 22: Soient A et B deux matrices diagonalisables de taille 3×3 .